881 research outputs found

    Active Topology Inference using Network Coding

    Get PDF
    Our goal is to infer the topology of a network when (i) we can send probes between sources and receivers at the edge of the network and (ii) intermediate nodes can perform simple network coding operations, i.e., additions. Our key intuition is that network coding introduces topology-dependent correlation in the observations at the receivers, which can be exploited to infer the topology. For undirected tree topologies, we design hierarchical clustering algorithms, building on our prior work. For directed acyclic graphs (DAGs), first we decompose the topology into a number of two-source, two-receiver (2-by-2) subnetwork components and then we merge these components to reconstruct the topology. Our approach for DAGs builds on prior work on tomography, and improves upon it by employing network coding to accurately distinguish among all different 2-by-2 components. We evaluate our algorithms through simulation of a number of realistic topologies and compare them to active tomographic techniques without network coding. We also make connections between our approach and alternatives, including passive inference, traceroute, and packet marking

    Higgsinoless Supersymmetry and Hidden Gravity

    Full text link
    We present a simple formulation of non-linear supersymmetry where superfields and partnerless fields can coexist. Using this formalism, we propose a supersymmetric Standard Model without the Higgsino as an effective model for the TeV-scale supersymmetry breaking scenario. We also consider an application of the Hidden Local Symmetry in non-linear supersymmetry, where we can naturally incorporate a spin-two resonance into the theory in a manifestly supersymmetric way. Possible signatures at the LHC experiments are discussed.Comment: 30 pages, 3 figures, references added, version to appear in JHE

    Recoil proton distribution in high energy photoproduction processes

    Get PDF
    For high energy linearly polarized photon--proton scattering we have calculated the azimuthal and polar angle distributions in inclusive on recoil proton experimental setup. We have taken into account the production of lepton and pseudoscalar meson charged pairs. The typical values of cross sections are of order of hundreds of picobarn. The size of polarization effects are of order of several percents. The results are generalized for the case of electroproduction processes on the proton at rest and for high energy proton production process on resting proton.Comment: LaTeX2e, 4 pages, 3 figure

    Steering between Bloch oscillation and dipole oscillation in parabolic optical waveguide arrays

    Full text link
    We study the optical oscillations of supermodes in planar optical waveguide arrays with parabolically graded propagation constant in individual waveguide interacting through nearest neighbor couplings. In these arrays, we have identified a transition between a symmetric dipole oscillation (DO) and a symmetry-breaking Bloch oscillation (BO) under appropriate conditions. There exist obvious correspondences between gradon localization and various optical oscillations. By virtue of an analogue between the oscillation of optical system and that of a plane pendulum, we propose a shift of the graded profile to cause a transition from BO to DO. We confirm the optical transition by means of Hamiltonian optics, as well as by the field evolution of the supermodes. The results offer great potential applications in optical switching, which can be applied to design suitable optical devices.Comment: Submitted to JOSA B for publication

    Classification of irreps and invariants of the N-extended Supersymmetric Quantum Mechanics

    Full text link
    We present an algorithmic classification of the irreps of the NN-extended one-dimensional supersymmetry algebra linearly realized on a finite number of fields. Our work is based on the 1-to-1 \cite{pt} correspondence between Weyl-type Clifford algebras (whose irreps are fully classified) and classes of irreps of the NN-extended 1D supersymmetry. The complete classification of irreps is presented up to N10N\leq 10. The fields of an irrep are accommodated in ll different spin states. N=10 is the minimal value admitting length l>4l>4 irreps. The classification of length-4 irreps of the N=12 and {\em real} N=11 extended supersymmetries is also explicitly presented.\par Tensoring irreps allows us to systematically construct manifestly (NN-extended) supersymmetric multi-linear invariants {\em without} introducing a superspace formalism. Multi-linear invariants can be constructed both for {\em unconstrained} and {\em multi-linearly constrained} fields. A whole class of off-shell invariant actions are produced in association with each irreducible representation. The explicit example of the N=8 off-shell action of the (1,8,7)(1,8,7) multiplet is presented.\par Tensoring zero-energy irreps leads us to the notion of the {\em fusion algebra} of the 1D NN-extended supersymmetric vacua.Comment: Final version to appear in JHEP. 52 pages. The part with the complete classification of irreps (and the explicit presentation of length-4 irreps of N=9,10,11,12 and N=10 length-5 irreps) is unchanged. An extra section has been added with an entire class of off-shell invariant actions for arbitrary values N of the 1D extended supersymmetry. A non-trivial N=8 off-shell action for the (1,8,7) multiplet has been constructed as an example. It is obtained in terms of the octonionic structure constant

    The Spinning Particles as a Nonlinear Realizations of the Superworldline Reparametrization Invariance

    Full text link
    The superdiffeomorphisms invariant description of NN - extended spinning particle is constructed in the framework of nonlinear realizations approach. The action is universal for all values of NN and describes the time evolution of D+2D+2 different group elements of the superdiffeomorphisms group of the (1,N)(1,N) superspace. The form of this action coincides with the one-dimensional version of the gravity action, analogous to Trautman's one.Comment: 4 pages, RevTe

    One-loop divergences in the 6D, N=(1,0) abelian gauge theory

    Get PDF
    AbstractWe consider, in the harmonic superspace approach, the six-dimensional N=(1,0) supersymmetric model of abelian gauge multiplet coupled to a hypermultiplet. The superficial degree of divergence is evaluated and the structure of possible one-loop divergences is analyzed. Using the superfield proper-time and background-field technique, we compute the divergent part of the one-loop effective action depending on both the gauge multiplet and the hypermultiplet. The corresponding counterterms contain the purely gauge multiplet contribution together with the mixed contributions of the gauge multiplet and hypermultiplet. We show that the theory is on-shell one-loop finite in the gauge multiplet sector in agreement with the results of [1]. The divergences in the mixed sector cannot be eliminated by any field redefinition, implying the theory to be UV divergent at one loop

    Conformal properties of hypermultiplet actions in six dimensions

    Full text link
    We consider scale-invariant interactions of 6D N=1 hypermultiplets with the gauge multiplet. If the canonical dimension of the matter scalar field is assumed to be 1, scale-invariant lagrangians involve higher derivatives in the action. Though scale-invariant, all such lagrangians are not invariant with respect to special conformal transformations and their superpartners. If the scalar canonical dimension is assumed to be 2, conformal invariance holds at the classical, but not at the quantum level.Comment: 14 pages, 1 figur

    Leading-Order Actions of Goldstino Fields

    Full text link
    This paper starts with a self-contained discussion of the so-called Akulov-Volkov action S_AV, which is traditionally taken to be the leading-order action of Goldstino field. Explicit expressions for S_AV and its chiral version S_AV^ch are presented. We then turn to the issue on how these actions are related to the leading-order action S_NL proposed in the newly proposed constrained superfield formalism. We show that S_NL may yield S_AV/S_AV^ch or a totally different action S_KS, depending on how the auxiliary field in the former is integrated out. However, S_KS and S_AV/S_AV^ch always yield the same S-matrix elements, as one would have expected from general considerations in quantum field theory.Comment: Minor changes, version to appear in European Physical Journal

    N=4 superconformal mechanics as a Non linear Realization

    Get PDF
    An action for a superconformal particle is constructed using the non linear realization method for the group PSU(1,1|2), without introducing superfields. The connection between PSU(1,1|2) and black hole physics is discussed. The lagrangian contains six arbitrary constants and describes a non-BPS superconformal particle. The BPS case is obtained if a precise relation between the constants in the lagrangian is verified, which implies that the action becomes kappa-symmetric.Comment: new subection, references added and new acknowledgment
    corecore